V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
V2EX  ›  min  ›  全部回复第 21 页 / 共 134 页
回复总数  2675
1 ... 17  18  19  20  21  22  23  24  25  26 ... 134  
2024-06-25 14:27:43 +08:00
回复了 ODESZA 创建的主题 上海 朋友收到病危通知书,撑不过本月,人各有命
“他让我们等他去世之后去起诉他,让他家里陪给我们一部分欠款”
可笑可笑
2024-06-25 14:15:35 +08:00
回复了 kyoma 创建的主题 职场话题 我是在背刺朋友吗?
你表现得很好,先感动自己,再感动他人,玄德公也不过如此
2024-06-24 09:55:41 +08:00
回复了 brazz 创建的主题 健康 长辈受到骨刺(骨质增生)病痛折磨十年之久,求解
为啥是微创手术,不是膝关节置换?
2024-06-24 09:53:58 +08:00
回复了 baoshu 创建的主题 Linux 有没有适合开发者的 Linux 系统
开发者是开发者,你是你,你的需求和他们的需求一致么? 你有没有特别的要求? 你有没有特别挑剔?
@_@
2024-06-18 17:18:30 +08:00
回复了 328174749 创建的主题 游戏 黑神话悟空,各位买不买!买了玩不玩?
急什么,你 steam libary 里面的游戏都玩光了?

等打折,国货/新品不冲首发
2024-06-12 16:36:49 +08:00
回复了 hello267015 创建的主题 生活 被业委会气到了
如果公共车位的收费是针对特定业主的,那不太合理
2024-06-03 17:11:06 +08:00
回复了 ebushicao 创建的主题 美酒与美食 交流一下各种饼类食物,我是真喜欢吃饼(面食)
我运动太少,消耗不够,不配享受这种餐食。。。 ~_~
2024-05-20 10:04:12 +08:00
回复了 kisshere 创建的主题 旅行 如果要睁眼看世界,去哪个国家比较好?
看就看美国
2024-05-20 10:01:10 +08:00
回复了 buyerhou 创建的主题 分享发现 再来一贴,车位交易因 100 元黄了!
原因是你不需要他的车位,他不需要你的钱
2024-05-18 19:56:11 +08:00
回复了 zs3128589 创建的主题 汽车 最近种草了理想,来些帮我拔草的老哥们
自从出了理想,才知道有这么多会开车的人也开过船的。。。
2024-05-16 16:08:39 +08:00
回复了 duix 创建的主题 Apple 怎么 vision pro 没啥讨论度了
所以现在要体验 vr ar ,还是 quest3 最合适?
2024-05-06 11:48:02 +08:00
回复了 sinORcos 创建的主题 NAS 集群式存储 NAS 的一种可能性?求大佬解惑
硬盘也是有寿命的,不如另外搭一套,方案也简单不折腾
2024-04-30 14:22:11 +08:00
回复了 dexlee2020 创建的主题 问与答 小孩考不上高中,还有什么出路?
“那次寄了 100 多把伞”
你们自己办事也不咋地啊,就这样的还管得了他?
2024-04-30 14:01:04 +08:00
回复了 UIXX 创建的主题 问与答 2024 年中买什么平板好
等等看新的 arm windows 平板,不过估计价格便宜不了
2024-04-30 11:40:33 +08:00
回复了 shortawn 创建的主题 职场话题 怎么面对工作中的“致郁系”同事?
我一般都不会点开这种治愈系帖子,这贴看了 3 行,留言,ctrl+w
2024-04-25 17:42:38 +08:00
回复了 Persimmon08 创建的主题 OpenAI 这个问题,大家的 GPT 都能答对吗?
@Claude-3-Opus 请比较上面三种不同的解法


Claude-3-Opus:

上述三种解法虽然细节略有不同,但整体思路是一致的。它们都分别计算了 y = x ln(1+1/x) 在 x 趋近于 0 和正无穷时的极限。

对于 x 趋近于 0 的情况,三种解法都使用了变量替换 t = 1/x,将原问题转化为求 lim(t→∞) ln(1+t)/t 的极限。然后都运用了洛必达法则,对分子分母分别求导,得出极限为 0 。

对于 x 趋近于正无穷的情况,我的解法和 Gemini-1.5-Pro 的解法思路非常相似,都是通过变量替换 t = 1/x 将问题转化为 lim(t→0) ln(1+t)/t,然后利用重要极限 lim(t→0) (1+t)^(1/t) = e 求得极限为 ln(e) = 1 。

GPT-4 的解法在处理 x 趋近于正无穷时略有不同。它先将 ln(1+1/x) 进行泰勒展开,然后再求极限。这种方法虽然合理,但相比其他两种解法略显复杂。

总的来说,三种解法殊途同归,都正确地求出了所需的极限。我和 Gemini-1.5-Pro 的解法更简洁直观一些。但 GPT-4 给出了一种不同的思路,这对拓宽我们的思维方式也有帮助。
2024-04-25 17:41:24 +08:00
回复了 Persimmon08 创建的主题 OpenAI 这个问题,大家的 GPT 都能答对吗?
Gemini-1.5-Pro

好的,我来独立解决这个问题。

分析:
我们需要分别计算 $y = x \ln(1+\frac{1}{x})$ 在 $x$ 趋近于 0 和正无穷时的极限。

当 x 趋近于 0 时:
变量替换: 令 $t = \frac{1}{x}$,则当 $x$ 趋近于 0 时,$t$ 趋近于正无穷。原式变为:
lim



0

ln

(
1
+
1

)
=
lim




ln

(
1
+

)

lim
x→0

xln(1+
x
1

)=lim
t→∞


t
ln(1+t)



洛必达法则: 由于 $\lim_{t \to \infty} \ln(1+t) = \infty$ 且 $\lim_{t \to \infty} t = \infty$,我们可以应用洛必达法则:
lim




ln

(
1
+

)

=
lim




1
1
+

1
=
lim




1
1
+

=
0
lim
t→∞


t
ln(1+t)

=lim
t→∞


1
1+t
1



=lim
t→∞


1+t
1

=0

因此,当 $x$ 趋近于 0 时,$y$ 的极限为 0 。

当 x 趋近于正无穷时:
变量替换: 令 $t = \frac{1}{x}$,则当 $x$ 趋近于正无穷时,$t$ 趋近于 0 。原式变为:
lim





ln

(
1
+
1

)
=
lim



0
ln

(
1
+

)

lim
x→∞

xln(1+
x
1

)=lim
t→0


t
ln(1+t)



重要极限: 我们知道 $\lim_{t \to 0} (1+t)^{\frac{1}{t}} = e$,因此:
lim



0
ln

(
1
+

)

=
ln

(
lim



0
(
1
+

)
1

)
=
ln

(

)
=
1
lim
t→0


t
ln(1+t)

=ln(lim
t→0

(1+t)
t
1


)=ln(e)=1

因此,当 $x$ 趋近于正无穷时,$y$ 的极限为 1 。

结论:
当 $x$ 趋近于 0 时,$y = x \ln(1+\frac{1}{x})$ 的极限为 0 。
当 $x$ 趋近于正无穷时,$y = x \ln(1+\frac{1}{x})$ 的极限为 1 。
2024-04-25 17:40:23 +08:00
回复了 Persimmon08 创建的主题 OpenAI 这个问题,大家的 GPT 都能答对吗?
Claude-3-Opus:

好的,我们来解决这个问题。我们需要分别计算 y = x ln(1+1/x) 在 x 趋近于 0 和正无穷时的极限。

第一步:当 x 趋近于 0 时。

令 t = 1/x,则当 x 趋近于 0 时,t 趋近于正无穷。
原式可以写成:
lim(x→0) x ln(1+1/x) = lim(t→∞) ln(1+t)/t

使用洛必达法则,对分子和分母分别求导:
(ln(1+t))' / t' = 1/(1+t) / 1 = 1/(1+t)

当 t 趋近于正无穷时,1/(1+t) 趋近于 0 。
所以,lim(x→0) x ln(1+1/x) = 0

第二步:当 x 趋近于正无穷时。

lim(x→∞) x ln(1+1/x) = lim(x→∞) ln((1+1/x)^x)

令 t = 1/x,则当 x 趋近于正无穷时,t 趋近于 0 。
(1+1/x)^x = (1+t)^(1/t)

当 t 趋近于 0 时,(1+t)^(1/t) 趋近于 e 。
所以,lim(x→∞) x ln(1+1/x) = ln(e) = 1

综上所述:

当 x 趋近于 0 时,y = x ln(1+1/x) 的极限为 0 。
当 x 趋近于正无穷时,y = x ln(1+1/x) 的极限为 1 。
--------------------------------------------------------------------------------------
GPT-4:

要解决这个问题,我们需要找到函数

=

ln

(
1
+
1

)
y=xln(1+
x
1

) 当

x 趋近于 0 和正无穷时的极限。我们将分步来解决这个问题。



x 趋近于 0 时
首先,我们可以通过变量替换来简化极限。令

=
1

t=
x
1

,则当

x 趋近于 0 时,

t 趋近于正无穷。原函数变为:


=

ln

(
1
+
1

)
=
1

ln

(
1
+

)
y=xln(1+
x
1

)=
t
1

ln(1+t)
我们需要求解的极限变为:

lim




ln

(
1
+

)

t→∞
lim


t
ln(1+t)


利用洛必达法则,我们可以对分子和分母分别求导:

lim




ln

(
1
+

)

=
lim







(
ln

(
1
+

)
)



(

)
=
lim




1
1
+

1
=
lim




1
1
+

=
0
t→∞
lim


t
ln(1+t)

=
t→∞
lim


dt
d

(t)
dt
d

(ln(1+t))

=
t→∞
lim


1
1+t
1



=
t→∞
lim


1+t
1

=0
因此当

x 趋近于 0 时,

=

ln

(
1
+
1

)
y=xln(1+
x
1

) 的极限为 0 。



x 趋近于正无穷时
现在考虑

x 趋近于正无穷的情况。原函数仍为:


=

ln

(
1
+
1

)
y=xln(1+
x
1

)
我们可以将
ln

(
1
+
1

)
ln(1+
x
1

) 进行泰勒展开:

ln

(
1
+
1

)

1


1
2

2
+

(
1

3
)
ln(1+
x
1

)≈
x
1


2x
2

1

+O(
x
3

1

)
所以,原函数可近似为:




(
1


1
2

2
)
=
1

1
2

y≈x(
x
1


2x
2

1

)=1−
2x
1




x 趋近于正无穷时,
1
2

2x
1

趋近于 0 ,因此:



1

1
2


1
y≈1−
2x
1

→1
所以当

x 趋近于正无穷时,

=

ln

(
1
+
1

)
y=xln(1+
x
1

) 的极限为 1 。

结论


x 趋近于 0 时,极限为 0 。


x 趋近于正无穷时,极限为 1 。
1 ... 17  18  19  20  21  22  23  24  25  26 ... 134  
关于   ·   帮助文档   ·   自助推广系统   ·   博客   ·   API   ·   FAQ   ·   实用小工具   ·   2171 人在线   最高记录 6679   ·     Select Language
创意工作者们的社区
World is powered by solitude
VERSION: 3.9.8.5 · 49ms · UTC 02:29 · PVG 10:29 · LAX 19:29 · JFK 22:29
Developed with CodeLauncher
♥ Do have faith in what you're doing.